Systematic Study of Dimuon Azimuthal Angle Reconstruction in SpinQuest
 Abinash Pun
 (For SpinQuest Collaboration)
 New Mexico State University
 Oct 30, 2020
 2020 Fall Meeting of the Division of Nuclear Physics

北 Fermilab

Sivers Asymmetry in SpinQuest Drell-Yan

- The Sivers asymmetry arises from a correlation between the intrinsic transverse momentum $\overrightarrow{\boldsymbol{k}}_{\boldsymbol{T}}$ of the parton, and the spin $\overrightarrow{\boldsymbol{S}}$ and momentum $\overrightarrow{\boldsymbol{p}}$ of the parent nucleon.

$$
\overrightarrow{\boldsymbol{S}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{p}}\right)
$$

- $\overrightarrow{\boldsymbol{k}}_{\boldsymbol{T}}$ can't be measured directly but the virtual photon transverse momentum $\overrightarrow{\boldsymbol{q}}_{T}=\overrightarrow{\boldsymbol{k}}_{\boldsymbol{T}}^{q}+\overrightarrow{\boldsymbol{k}}_{\boldsymbol{T}}^{\bar{q}}$ can be.
- If the spin is transverse to the beam direction, then:

$$
\vec{S}_{\perp} \cdot\left(\vec{q}_{T} \times \vec{p}\right)=\left(\vec{S}_{\perp} \times \vec{q}_{T}\right) \cdot \vec{p}=S_{\perp} q_{T} p \sin \left(\phi_{T}-\phi_{q_{T}}\right)
$$

- If the $\vec{k}_{T}^{\bar{q}}$ of the anti-quark in the polarized target proton is correlated to the spin, then it will create the azimuthal asymmetry

Thus, it is very important to reconstruct the $\phi_{q_{T}}$ distribution to extract the Sivers asymmetry

$$
\begin{array}{ll}
\phi_{q_{T}}=\text { Azimuth angle of } \vec{q}_{T} \text { in detector rest frame } & \text { More details in } \\
\phi_{T}=\text { Azimuth angle of target spin direction } & \text { Forhad's talk }
\end{array}
$$

SpinQuest: Spectrometers

Four tracking stations

- Drift Chambers; St. 1, 2 \& 3
- Proportional tube: St. 4
- For muon identification

120 GeV p beam

Drift Chambers

- $x-, y$ - positions of muon track
- Principle: Ionization Chamber
- 6 planes of wires in each station

Reconstructing Azimuthal Asymmetry

Precise extraction of the Sivers asymmetry largely depends on how well the azimuthal angle, $\boldsymbol{\phi}_{\mathrm{qT}}$, of the dimuon can be reconstructed

Strategy

- Generate known asymmetry (spin up and spin down) in dimuon azimuthal distribution in the truth level
- Reconstruct dimuon azimuthal distribution after full detector simulation
- Unfold the measured azimuthal distribution
- Response matrix with separate set of unpolarized MC simulation.
- Use ratio method for extracting the asymmetry from unfolded dimuon azimuthal distribution

Generated Asymmetry

- Introduced asymmetry of $\boldsymbol{A}_{\boldsymbol{N}}=\mathbf{0 . 1}$ in the azimuthal distribution of dimuon at generator level
- Spin Up set: azimuthal distribution of $\left[1+A_{N}{ }^{*} \sin \left(\boldsymbol{\phi}_{\mathrm{qT}}\right)\right]$
- Spin Down set: azimuthal distribution of $\left[1+A_{N}{ }^{*} \sin \left(\boldsymbol{\phi}_{\mathrm{qT}}+\pi\right)\right]$

Reconstructed Azimuthal Distribution

- Azimuthal distribution is distorted by detector acceptance (which has an approximately $\cos 2 \boldsymbol{\phi}_{\text {qT }}$ shape) and by smearing in reconstruction

Reconstructed Phi ($\boldsymbol{\phi}_{\mathrm{qT}}$) Asymmetry

Measured

$$
A_{N}(\boldsymbol{\phi})=\frac{N_{u p}(\boldsymbol{\phi})-N_{\text {down }}(\boldsymbol{\phi})}{N_{u p}(\boldsymbol{\phi})+N_{\text {down }}(\boldsymbol{\phi})}
$$

Truth

- Ratio method cancel out the various effects including acceptance, but the smearing doesn't.
- Magnitude of extracted asymmetry is lower than the generated one.
- We will unfold the smearing effects to restore the original asymmetry

Unfolding Method

- Method to remove the known effects of systematic biases, measurement resolution to determine the "true" distribution
- Response Matrix (R): Maps the "true" distribution on to the measured one
- For 1-D case, $R_{i j}=p\left(r \in(\Delta r)_{i} \mid t \in(\Delta t)_{j}\right)$;the conditional probability that a selected event, generated in a bin i, is reconstructed in a bin j.
- $\mathbf{M}=\mathbf{R T}+\boldsymbol{\beta}$ (Matrix form, $\boldsymbol{\beta}$ background), \mathbf{M} : Measured and \mathbf{T} : Truth vector
- The response matrix is usually determined using Monte Carlo simulation (training), with the true values coming from the generator output.
- The unfolding procedure reconstructs the true \boldsymbol{T} distribution from the measured \boldsymbol{M} distribution using the Response matrix \mathbf{R}

```
T= R'1}
```


Response Matrix

$R_{i j}=p\left(r \in(\Delta r)_{i} \mid t \in(\Delta t)_{j}\right)$; the conditional probability that a selected event, generated in a bin i, is reconstructed in a bin j.

Dimuon Azimuthal Distribution

- Iterative Bayesian method of unfolding is used with RooUnfold software
arXiv:1105.1160
- The unfolded distribution agrees with the truth distribution within the statistical uncertainties

Unfolded Asymmetry

$$
A_{N}(\boldsymbol{\phi})=\frac{N_{u p}(\boldsymbol{\phi})-N_{\text {down }}(\boldsymbol{\phi})}{N_{\text {up }}(\boldsymbol{\phi})+N_{\text {down }}(\boldsymbol{\phi})}
$$

Original asymmetry restored from unfolded distribution

Asymmetry

$$
A_{N}(\boldsymbol{\phi})=\frac{N_{u p}(\boldsymbol{\phi})-N_{\text {down }}(\boldsymbol{\phi})}{N_{u p}(\boldsymbol{\phi})+N_{\text {down }}(\boldsymbol{\phi})}
$$

Summary

- Systematic study of dimuon azimuthal angle $\left(\boldsymbol{\phi}_{\mathrm{qT}}\right)$ reconstruction
- Iterative Bayesian method with RooUnfold software is used for unfolding the measured azimuthal distribution
- Asymmetries are calculated with ratio method using the measured, truth and unfolded azimuthal distribution

Azimuthal Distribution	Asymmetry $\quad A_{x}(\phi)=\frac{N_{\text {ut }}(\phi)-N_{\text {dout }}(\phi)}{N_{\text {up }}(\phi)+N_{\text {damem }}(\phi)}$
Truth (Generated MC)	0.0990 ± 0.0042
Measured	0.0805 ± 0.0043
Unfolded (Iterative Bayesian)	0.1004 ± 0.0042

- Unfolded azimuthal distribution using Iterative Bayesian method restored the generated truth

Outlook

- Look at the systematic effects
- Uncertainty in detector geometry
- Different models for energy loss in FMAG
- Different conventions for multiple scattering corrections in FMAG
- Explore other unfolding methods

Back Up

RooUnfold

- Framework for unfolding using ROOT classes
- Methods available:
- Unregularized

1. matrix inversion (RooUnfoldInvert)
2. using bin-by-bin correction factors, with no inter-bin migration (RooUnfoldBinbyBin)

- Regularized

1. Iterative Bayes method (RooUnfoldByes)
2. Iterative, Dynamically Stabilized (IDS) unfolding (RooUnfoldlds)
3. Singular Value Decomposition (SVD) method (RooUnfoldSVD)
4. TUnfold (RooUnfoldTUnfold)

RooUnfold classes

arXiv:1105.1160

Forhad's slide

Sivers Effect in the Nucleon

Reasons for the Asymmetry

The number density of unpolarized quarks in a transversely polarized proton:

$$
f_{q / p^{\uparrow}}\left(x_{B}, \vec{k}_{T}\right)=f_{1}^{q}\left(x_{b}, k_{T}^{2}\right)-f_{1 T}^{\perp q}\left(x_{B}, k_{T}^{2}\right) \frac{\left(\hat{P} \times \vec{k}_{T}\right) \cdot \vec{S}}{m_{p}}
$$

The \vec{k}_{T} distribution of quarks in a transversely polarized
Gives correlation between \vec{k}_{T} and \vec{S} proton can be asymmetric and known as "Sivers effect".
$\mathrm{f}_{1}^{\mathrm{q}}=$ Unpolarized quark density.
$f_{1 T}^{\perp q}\left(x_{B}, \vec{k}_{T}\right)=$ Sivers function.
$\vec{S}=$ Spin polarization vector.
$\vec{P}=$ Three momentum of the proton.
$\vec{k}_{T}=$ Intrinsic transverse momentum of unpolarized quarks.

Sivers Effect: Intrinsic k_{T} imbalance leads to the asymmetry

Source: A. Bacchetta et al. II Nuovo Saggiatore

Sea-quark Sivers Asymmetry from Polarized Drell-Yan
The Drell-Yan cross section in terms of Sivers asymmetry:

$$
\begin{aligned}
& \sigma_{D Y}^{\uparrow \downarrow}=\frac{d \sigma^{L O}}{d^{4} q d \phi_{S}} \propto 1 \pm\left|\mathrm{S}_{\mathrm{T}}\right| \sin \phi_{S} A_{T}^{\sin \phi_{S}} \\
& A\left(\phi_{S}\right)=\frac{1}{\left|S_{T}\right|} \frac{\sigma_{D Y}^{\uparrow}-\sigma_{D Y}^{\downarrow}}{\sigma_{D Y}^{\uparrow}+\sigma_{D Y}^{\downarrow}}=\sin \phi_{S} A_{T}^{\sin \phi_{S}}
\end{aligned}
$$

$\vec{S}_{T}=$ Target spin vector
$\widehat{x}, \widehat{y}, \widehat{z}$, is target rest frame $=\mathrm{TF} ; \hat{x}=\hat{q}_{T}, \hat{y}=\hat{z} \times \hat{q}_{T}$
$\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}$ is detector rest frame $=\mathrm{DF}$
$\vec{q}_{T}=$ Dimuon's transverse momentum
$\vec{k}_{T}=$ Quark's transverse momentum

1. $\sigma_{D Y}^{\uparrow \downarrow}$ is the Drell-Yan cross section and $A_{T}^{\sin \phi_{S}}$ is the Sivers asymmetry.
2. Azimathal angle ϕ_{S} in TF and ϕ in DF can be written as $\phi_{S}=\left(\frac{\pi}{2}-\phi\right)$.
