GPU-based Online Reconstruction for J / ψ TSSA at the SpinQuest Experiment

Eric Fuchey
Mississippi State University

10th workshop of the APS Topical Group on Hadronic Physics
April $12^{\text {th }} 2023$

Outline

- Motivation:
- The Nucleon Spin Puzzle and the Sivers Functions
- The SpinQuest Experiment
- SpinQuest Reconstruction with GPUs
- Motivations and Challenges
- Features and Performances
- Summary and Outlook

Nucleon Spin Puzzle

Jaffe Sum rule:

$$
S_{N}=1 / 2=1 / 2 \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

$\Delta \Sigma$: quark polarization
$\Delta \mathrm{G}$: gluon polarization
L_{q} : quark angular momentum
L_{g} : gluon angular momentum
Transverse Single Spin Asymmetry (TSSA) in
Deep Inelastic Scattering on proton $A_{1}{ }^{p}$
[Compass Coll.: Phys. Lett. B753, 18 (2016)]:

$$
\Delta \Sigma \sim 0.3
$$

Angular momentum of quarks and gluons contributes to more than half of the spin

Sivers Function

The Sivers function provides information on quark angular momentum. Sivers function accessed with TSSA measurements on polarized Drell-Yan.

The SpinQuest Experiment: Spectrometer

Polarized targets:

- NH_{3} : Ammonia;
- ND_{3} : Deuterated Ammonia;

Beam: $\boldsymbol{p}, \mathbf{1 2 0} \mathbf{G e V}$

Beam delivered in 4 -seconds long spills every 50 seconds

The SpinQuest Experiment: Polarized Target

Polarized targets:

- NH_{3} : Ammonia;
- ND_{3} : Deuterated Ammonia;
- 80\% polarization;
- Polarization flip every 8 hours.

The SpinQuest Experiment: Drell-Yan measurement

Measurement of the sea quark Sivers function on proton (NH3) and neutron (ND3). Contributions of the beam Sivers function suppressed by acceptance.

The SpinQuest Experiment: J/ Ψ measurement

J / ψ TSSA is dominated by gluon fusion in the SpinQuest kinematical coverage:

- gluon Sivers function;
- gluon angular momentum (L_{g}).

$$
x_{F} \equiv x_{1}-x_{2}
$$

The SpinQuest Experiment: J / ψ measurement

J / ψ TSSA is dominated by gluon fusion in the SpinQuest kinematical coverage:

- gluon Sivers function;
- gluon angular momentum (L_{g}).

TSSA statistical uncertainties for one week of J / ψ data for the first SpinQuest publication.

GPU-based Online Reconstruction Program

Scope of the project: monitor SpinQuest data in real-time with an ultra-fast analysis program using Graphics Processing Units (GPUs) instead of Computer Processing Units (CPUs).

GPU Programming Challenges

Memory management much more "rigid" on GPUs than on CPU:

- Memory must be pre-allocated on GPUs (input+output);
- Input data copied from CPU to GPU;
- data processed on GPUs;
- output data copied back to CPU to save the output of the data processing on disk.

GPUs Speed Optimization: Per-Event Multithreading

Multithreading is pivotal to achieve the required processing speed:

- Search of tracks candidates on a definite portion of the acceptance for each thread (32 threads total);
- Track candidates spread evenly over the existing threads to optimize GPU resources.

Track Reconstruction for SpinQuest

Main steps:

- reconstruct straight tracks from station 2 (D2) to station 3 (D3p/D3m);
- associate hits with station 1 (D0) to straight tracks;
- combining station 2-station 3 track and station 1 track segments => momentum.

[^0]
GPU Online Reconstruction Performance

With NVidia GTX1070 Max-Q design (2048 cores, 8GB), processing of 12000 data events takes 35 seconds (15 times faster than multi-threaded CPU program). Further improvements are expected with the newest hardware (NVidia RTX4090, 16384 cores, 24GB).

Tracking Comparison: GPU vs. CPU

global tracks

global tracks

global tracks

global tracks

global tracks

Pure Monte Carlo dimuons:
Green: analysis made with CPU track reconstruction
Red: analysis made with GPU track reconstruction
$\mathrm{x}_{0}, \mathrm{y}_{0}$: track position at origin
$\mathrm{t}_{\mathrm{x}}, \mathrm{t}$: track slope
p: momentum

Vertex Reconstruction for SpinQuest

Main steps:

- propagate the track through the Focusing magnet;
- extrapolate the track to the target;
- distance of closest approach from beam line => vertex.

Vertex Comparison: GPU vs. CPU

$v_{x}, v_{y}, v_{z}:$ vertex position
$p_{x}, p_{y}, p_{z}:$ momentum at vertex

Summary and Outlook

The Spinquest experiment will provide great insight on the question of the nucleon spin puzzle:

- Drell-Yan on the proton and the neutron => Sivers function in the sea quark region;
- $\mathrm{J} / \psi=>$ Gluon Sivers function!

GPU online reconstruction program close to completion

- GPU offers significant performance improvement compared to CPUs;
- Tracking and vertexing results compare reasonably well with CPU analysis;
- Next steps:
- Optimization of the code for real data processing (ongoing);
- online display.

This work is supported in part by the U.S. DOE award \# DE-FG02-07ER41528

[^0]: X : vertical wires
 U : wires at +14 degrees with respect to x wires
 V : wires at -14 degrees with respect to x wires

